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SUMMARY 

A Neumann boundary value problem for the equation rot v - hv = 0 is considered in/R 3 and/R 2. The ap- 
proach is by transforming the boundary value problem into an equivalent boundary integral equation de- 
duced from a representation formula for solutions of rot v - hv = 0 based on the fundamental solution of the 
Helmholtz equation. In particular, for the two-dimensional case a detailed discussion of the integral equation 
is carried out including the approximate solution by numerical integration. 

1. Introduction 

Force-free fields in/R 3 are solutions of  one of  the two equivalent equations 

[rot v,v] = 0 (1.1) 

or 

rot v - Xv = 0 (1.2) 

where k denotes a scalar which, in general, is space dependent. They may be regarded as static 

magnetic fields for which the Lorentz force vanishes and they describe the equilibrium of an 

electrically conducting liquid - for instance a plasma - in the presence of  a magnetic field ([3], 

pp. 188, [4], pp. 35, [14]). In hydrodynamics solutions of (1 .1)  or (1.2) are also called Beltrami 

fields ([1], [18], p. 43, [19], p. 188, [20], p. 68, 76) and they correspond to steady incompress- 

ible rotational fluid flows which possess Bernoulli constants independent of  the streamlines. 

In several previous papers [8], [9], [10] the author considered the treatment of  a Neumann 

boundary value problem by integral equation methods using two different approaches. The first 

method, described in [8] and [9], is based on Green's matrices for appropriate boundary value 

problems of  potential theory and results in a volume integral equation for the unknown field 

which is equivalent to the boundary value problem. The second method, described in [10], is 

based on a representation theorem for inhomogeneous harmonic vector fields and leads to a 

system of  one volume and one surface integral equation for the volume and surface vortices of  

the unknown field which again is equivalent to the boundary value problem. Comparing the 

two approaches, the first one gives results on the existence of  eigenvalues X because of self- 
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adjointness properties of the volume integral operator which are not obtainable by the second 

method. On the other hand, the second approach enables one to get results on the existence of 
solutions to the boundary value problem in terms of the familiar Fredholm alternative which 

cannot be found by the first method. Both approaches can be used for ~ not necessarily con- 
stant. 

In this paper we shall develop a third approach which makes use of  the property that any 
force-free field with constant X satisfies the vector Helmholtz equation 

A v + ~ 2 v = 0 .  

In the first part of the paper we shall give a representation theorem for solutions of (1.2) with 

constant X based on the fundamental solution to the Helmholtz equation. Then this representa- 
tion theorem is used to obtain a boundary integral equation equivalent to the boundary value 

problem. In the second part this integral equation will be discussed in the two dimensional case 

of force-free fields in an infinite cylinder. In particular we shall outline a method for the numer- 

ical solution of the integral equation and provide a numerical example. 

The main advantage of this new approach lies in the fact that the integral equation contains 

only boundary integral operators which is of  considerable importance for numerical approxima- 

tions. As compared with the two previous methods it is confined to constant X. 

2. A representation theorem 

Let B be a bounded domain in/R 3 . The boundary of B, denoted by S, is assumed to be con- 
nected and to belong to the class C 2 . The complement of B is designated by B :=/R3~ff. By n 

we denote the unit normal to S directed into/1. 

Let X be a real number and denote by 

1 e/xtx-yL (2.1) 
• (x ,y)  . -  4 ,  Ix  - y I 

the fundamental solution to the Helmholtz equation in three dimensions. 

We present the following representation theorem: 

Theorem 2.1. Let  v ~ C 1 (B ) n C(-B) be a complex valued vectorfield such that div v, rot v ~ C(B). 

Then there holds* 

v = - grad U + rot A + XA in B (2.2) 

where 

* By (a,b), [a,b] and (a,b,c) we denote the scalar product, vector product and triple product of the vectors 
a,b,c, respectively 
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U(x) := fB ~ (x ,y )d iv  v(y)dy - fS ~(x,y) (n(y),v(y))ds(y), 

A(x) := fB cb(x,y) {rot v(y) - Xv(y)}dy - fs cb(x,y) [n(y),v(y)lds(y). 

Furthermore 

d i v A + k U = O  in B. 

31 

(2.3) 

(2.4) 

(2.5) 

Proof" We choose an arbitrary fixed point  x E B and circumscribe it with a sphere Kp(x) := 

{Y ~ / R  3 I I x - y I = P}. We assume the radius small enough so that Kp(x)  c B and direct the 

unit normal n to Kp(x)  into the interior of Ko(x ). For all y E Bp := {v ~ B [ Ix - y I > p} there 

holds 

divxdPV(y ) = ~/, divyv(y) - divyCbV(v), (2.6) 

rotxqbV(y ) - k~bvC v) = cb {rOtyV(y) - Xv(v)} - rotyqbv(v). (2.7) 

Subtracting the gradient o f  (2.6) f rom the rotat ion o f  (2.7) we obtain 

- gradx[~ divyv(y) - divy~Sv0,)] + rotx[~b{rotyV(y) - Xv0')} - roty~SV(V)] 

= - grad divxq~V~V) + rot rOtxqSV(y ) - X rotxqSv(y ) 

= - AxrbVQV) - X rotx~V(V ) 

= - k[~{rOtyV(y) - Xv(v)} - rOtyq~V(V)]. 

Now we integrate over Bp and apply Gauss' theorem to obtain 

+rOtxEfBocb{rotyv(Y)-Xv(y)}dY-fs~[n(y),v(y)]ds(y)l 

+XEfBp@{rOtyV(y)-Xv(y)}dY-fsrb[n(y),v(y)]ds(v) l 

= - gradx fKp  ,[nCv),v v)]asfy) + rotx fKp ¢b[n(v),v(y)]ds(v) 

+ X -^('-o ~'[n(y),vfy)]dsO,). 
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Since on Kp there holds 

e ix° ( 1  x) e ixo 
• (x ,y)-  47tO ' grady~b(x,y) = - i ~ n(y), 

a straightforward calculation shows that the right hand side of the previous equation tends to 
v(x) as p ~ 0, whence (2.2) follows. 

Adding the divergence of (2.7) to equation (2.6) multiplied by X we get 

0 = divx[dP{rotyv(y ) - Xv0~)} - roty4Pv(y)] + ;k[dp divyv(y) - divydPV(V)]. 

Again we integrate over Bp and apply Gauss' theorem to obtain 

divxl fBpdp<rOtyV( .v) -Xv(v)}dY- fs~[n(y) ,v(y) 'ds(y)  1 

+~IfBodPdivyv(y)dY-fsdP(n(Y) , ' ( .P))ds(y)  1 

= divx fl¢.p ~[n(y),v(y)]ds(y) + )t fgp ##(n(y),v(y))ds(y). 

By straightforward calculation it is verified that the right hand side tends to zero as p ~ 0, 
whence (2.5) follows. 

The representation theorem 2.1 generalizes Cauchy's integral formula for vector fields ([16], 
p. 97) which may be regarded as the special case X = 0 of the case of arbitrary X. 

3. Boundary value problem and equivalent integral equation 

We shall consider the following boundary value problem from the theory of force-free fields. 

Problem K(B): Given a real number X 4= O, a vector fieM u ~ C 1 '~(-B)ancl a function e ~ C°'~(S), 
0 < a < 1 ,find a vectorfieM v ~ C 1 (B) n C(-B) satisfying the clifferential equation 

r o t v - X v = u  inB (3.1) 

and assuming normal components 

- ( n , v )  = e o n  S .  (3.2) 

By Stokes' theorem we readily observe that the condition 
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f s  {(n,u) - = Xe}ds 0 
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(3.3) 

is necessary for the existence of a solution to problem K(B). In the subsequent analysis we shall 
assume that this solvability condition is satisfied. 

We derive a boundary integral equation for the tangential components of a solution to prob- 
lem K(B). 

Theorem 3.1. Let v be a solution of the boundary value problem K(B). Then the tangential 
component 

~/:= - [n,v] on S ( 3 . 4 )  

solves the boundary integral equation 

+ fs [n(x)'r°tx~bT(Y) + X~I'T(y)]ds(y) (3.5) 

_,ot. ; ~,.~v),,._ ~ £ o.),,y 1' x~ s. 

Pro@ From the differential equation (3.1) we find 

1 
div v = - ~ div u in B. (3.6) 

Therefore, by the representation theorem 2.1 we can write 

1 
v ( x ) = - g r a d  { f B - ~ d ~ d i v u O ~ ) d y +  fsdPe(y)ds(v)} 

+,o, ts,  + 

From this, with the help of the jump relations for surface potentials ([5], [17], p. 194) the inte- 
gral equation (3.5) is obtained by letting x tend to the boundary S. We point out that for the 
application of the jump relations it suffices to have 7 continuous on S, but e has to be uniform- 

ly H61der continuous. 
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In order to state the converse of Theorem 3.1 we give the 

l)ef'mition 3.2. The number 2~ is called regular with respect to the boundary value problem 
K(B ) i f  for all solutions w ~ C 1 (B) n C(-B),a ~ C 2 (B) n C(-B) of  the system of  differential equa- 
tions 

rot w - ),w = u + grad a (3.7) 

in B 
Am + ),2a = 0 (3.8) 

satisfying the boundary conditions 

- ( n , w )  = e ( 3 . 9 )  

on S 
a = 0 (3.10) 

there follows a = 0 in B. 
Obviously, the set 

A(B) := {), 4:0 I ), is not regular with respect to K(B)} 

is a subset of the countable set of interior Dirichlet eigenvalues ?~ for which (3.8) and (3.10) 
have a nontrivial solution a for which 

L adx = 0. (3.11) 

In Sec. 4 we shall provide an example for a nonempty A(B). 

In order to decide whether X is regular or not is has to be checked whether the additional 
uniqueness property required in Definition 3.2 is satisfied or not. This can be done either by 
establishing beforehand that ), is not an eigenvalue of the Dirichlet problem or just a simple 
eigenvalue with fB adx 4 :0  for the eigenfunction a, or it will automatically manifest itself dur- 
ing the numerical calculation. Since in the case of a non-regular ),, as we shall see later, the in- 

tegral equation (3.5) has additional solutions, the linear system obtained from the integral equa- 
tion by numerical integration will become ill-conditioned. 

Theorem 3.3. Let X be regular with respect to K(B) and let 7 be a continuous solution of  the 
integral equation (3.5). Define 

1 
U(x) := - ~ fB * div u(y)dy + fs  *e(y)ds(y), (3.12) 

A(x) := ~ ~u(y)dy + fs  cbT(7)ds(y). (3.13) 
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Then 

v : = -  grad U+ rotA + XA (3.14) 

is a solution to the boundary value problem K(B). 

Proof." Since u ~ C*'a(B), by virtue of the regularity properties of volume potentials ([5], [12 ], 
p. 27) we have U,A ~ C2(B) and U,A ~ C2(B) and 

t l  
AU+X 2U= -~ divu inB, 

0 in/~; 
(3.15) 

(3.16) 

Using (3.15) and (3.16), we find v ~ C I(B) and v ~ C1 (J~) and 

rotv - Xv = f g r a d ( d i v A  
+ ~w)+u inB, 

[ grad(div A + ;kv) in/). 
(3.17) 

Next we observe that the right hand side of the integral equation (3.5) is of class C°'a(S) 
because u ~ C 1,a(ff) and e ~ C °'s(S). Since the integral operator on the left hand side of (3.5) 
maps C(S) into C°'a(S) ([5], p. 62, [6], Theorem 5.1, [21], Lemma 6) any continuous solution 
3' automatically is of class C °'a(S). Therefore, due to the regularity properties of surface poten- 
tials with uniformly H61der continuous densities, v can be continued uniformly H61der con- 
tinuously into S from both sides. If we distinguish the limits obtained by approaching S from 
inside/~ and B by the indices + and - ,  respectively, the jump relations for the surface potentials 
lead to 

v+ - v_ = en + [3",n] on S, (3.18) 

and, with the aid of the integral equation (3.5), 

[n,v+] =0 onS. (3.19) 

Since div A in/~ is a solution to the Helmholtz equation satisfying the Sommerfeld radia- 
tion condition by Green's representation theorem we can write 

f,~ ~ ~,I~ 0 d ivA(y) tds(y) ,  x ~[~, divA(x)= divA(y) On(y-~-) -(I) 
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where ff denotes a surface parallel to S separating the point x from S. Using (3.17)and Stokes' 
theorem we transform 

f ~  ~n divAds= f~cb(n,rotv-Xv-XgradU)ds 

= f ~  [(n,v, grad ~)  - X~(n,v + grad U)]ds. 

Now we are able to pass to the limit S -~ S and with the aid of (3.19) we obtain 

divA(x)= fs {divA(y) ~---~--)a~P +p(y)eptds(y), x •B,  (3.20) 

where we have set/~ := X(n,v+ + grad U÷) Is. Since divA Is • C°'a(S) and/1 • C°,a(S) we now 
may let x tend to the boundary and find the integral equation 

~b ds(y) = ~ la(y)~ds(y), x • S. (3.21) ½divA(x)- fs divA(y) a-~'~'-) 

The right hand side of (3.21) belongs to CI'a(S) since for the density we have/1 • C°'a(S). 
Thus, because the integral operator in equation (3.21) maps C°'a(S) into CI'a(S) ([12], p. 42, 
[21], Lemma 7) we conclude div A is • CI"a(S) • But then finally from (3.20)we see divA • 
C l 'a(~) because double layer potentials with densities of class C 1'~(S) belong to C 1 'a(~) ([12], 
p. 40, [21], Lemma 4). 

From the transformation 

divA(x)= fB cb divu(y)dy - fs ¢b(n(y),u(y))ds(y) + div fs ~bT(y)ds(y) 

we deduce divA • C2(B) n C°,~(B). Define 

a : = div A + XU. (3.22) 

Then, using (3.15) and (3.16), we find 

Aa + ~k2a = 0 in B and/~ (3.23) 

and with the help of the jump relations we find 

a+ = a_ on S. (3.24) 
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Define 

w:=Xv+grada  in/). 

From (3.17) we deduce 

r o t w - X w = 0  in/~ 

and 

37 

(3.2s) 

(3.26) 
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fK iwl2ds=°(1)' R ~oo 
R 

and from this and (3.27) we conclude 

w = 0  in/)  

Hence, 

Aw + X2w = 0 in/3. (3.27) 

By straightforward calculation it can be shown that the radiation condition 

w(x)= , Lx I--,oo, 

(3.28) 

Er x I o('I o t w ( x ) , ~  -iXw(x)-- ~ , L x l - ~ ,  

holds uniformly with respect to all directions x/I x I. Let K R := {x ~/R 3 L I x I = R } and assume 

the radius R of this sphere large enough such that K R C/~. Let n denote the outward drawn 

unit normal to K R and let/~R := {x ~ / )  I Ix l<R} .  Then, using Gauss' and Stokes' theorem, 
from (3.26) and (3.19) we derive 

L ~,w, rot w~-- ~ L d,v~w,w~x ~ £ ~,w,w~s 

= X fS (n, grada, grad a)ds = 0. 

On the other hand, from (3.28) there follows 

fKR (n,w, rotw)ds=iX fKR [w [2ds+o(1), R ---~ oo. 
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by Rellich's Lemma ([12], p. 161). 
We now have 

Xv + grad a = 0 in/)  (3.29) 

and from (3.19) we deduce 

a =ao = const on S. (3.30) 

Therefore, from the regularity properties of solutions to the Dirichlet problem for the Helm- 
holtz equation ([12], p. 157) we obtain a ~ C l'a(B). Using Green's and Stokes' theorem with 
the aid of (3.23), (3.29), (3.30), (3.18), (3.17) and (3.3) we get 

Im Ra-~n dS =Ira £ R ~ & a + l g r a d a l Z ] d x +  fsa-~n dS 

= - X l m { a o  fs [(n,v_)+e]ds} 

=Im ao fs ds 

=Im { fB [ a A o + l g r a d a l 2 ] d x t = 0 "  

On the other hand, since obviously the radiation condition 

grad a(x), x - ika(x) = o , I x I "* oo , 

is satisfied uniformly with respect to all directions, we get 

a-~n ds=iX la l2ds +o(1), R ~oo. 
R R 

Hence, 

fK la i2ds=°(1)' R-~oo 
R 

and again by Rellich's Lemma we get 
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a =0 inB 

whence 

v ---0 in/~ 

follows. 
Summarizing our results we have now arrived at 

r o t v - X v = u + g r a d a  inB, 

- ( n , v )  = e o n  S ,  

and 
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(3.31) 

(3.32) 

(3.33) 

(3.34) 

~a + ~k2a = 0 in B, (3.35) 

a =0  onS.  (3.36) 

Thus, since X is assumed to be regular with respect to K(B) we obtain a = 0 in B and the proof 
is complete. 

When X is not regular with respect to K(B) we cannot expect the converse of Theorem 3.1 
to be valid. In this case, for the additional term in the representation theorem stemming from 
the extra term grad a on the right hand side of the differential equation (3.7), we calculate 

1 
- g r a d  f B - - X  ~Aa(y)dy +rot  fB d~grada(y)dy+X fB cbgradaO')dY (3.37) 

= fB {)~a(y)grady~ - [gradyqb,grad a(v)] + Xqb grad a(y)}dy 

= fB {X gradyqba(y) - roty(qb grad a(y))}dy 

= fs  {Xd~a(y)n(y) - d~tn(y),grad a(y)] }ds(y) = O. 

Therefore, by going for the tangential component of the solution w of (3.7) and (3.9) through 
the same argument as carried out in the proof of Theorem 3.1, we see that the tangential com- 
ponent of w solves the same equation as for the solution v to (3.1) and (3.2). But the tangential 
components of the two solutions must be different, because otherwise from our calculation 
(3.37) and the representation theorem we would obtain the contradiction w = v. 

These results may serve as an example for a boundary integral equation derived from a repre- 
sentation theorem which is not fully equivalent to the boundary value problem. 
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4. Two-dimensional case 

In the subsequent analysis we shall study the two-dimensional case for which, as we immediate- 

ly shall see, a complete discussion of the boundary integral equation is possible. 
To be more precise, we shall consider the boundary value problem K(B) for a vectorfield 

v = (vl(xl,x2),v2(xx,x2),v3(xl,x2)) in a cylinder B x/R C/R 3 where B denotes a bounded 
domain in ~R 2 . Then our previous results remain valid after replacing (2.1) by the fundamental 
solution 

i Ho~(~ Ix l) (4.1) • ( x , y )  = -4 - y 

to the Helrnholtz equation in two dimensions. Here H A denotes the Hankel function of the first 
kind and of order zero. The integrals being understood to be carried out over the cross section 

B of the cylinder and its boundary S. 
Let t denote the unit tangential vector of the boundary S such that 

[n,t] = e3, (4.2) 

e3 denoting the unit vector in the x3-direction. We decompose 

~, = r/t + Ge 3 on S, (4.3) 

this means 

v = ~?e3 - 6t - en on S. (4.4) 

Then the integral equation (3 5)  is split into the system of two equations 

£ f rl(y)ds(y) - X as *8(y)ds(y) (4.5) 

= (e3 ,rot fB ¢bu(y)dy + X fB ¢bu(v)dy), 

½6(x)+ X fS (n(x)'n(Y))CbB(y)ds(y)- fs ~a~ 6(y)ds(y) (4.6) 

1 
= (t,grad { fB- - -~  cbdivu(y)dy+ ~ d~e(y)ds(y)t) 

Journal ofEngineeringMath., Vol. 15 (1981) 29-48 



A boundary integral equation method 41 

In the two-dimensional case the boundary value problem K(B) can be reduced to solving a 
Dirichlet boundary value problem for the Helmholtz equation. By writing down the cartesian 
components of the equation rot v - Rv = u it is readily verified that the problem K(B) is equi- 
valent to solving the Dirichlet problem 

A v 3 + X 2 v a : - ( e 3 , r o t u + R u )  inB, (4.7) 

Ova = (n,u) - Re on S, (4.8) 
at 

for the component v3 in x3-direction and then taking 

1 (~v3 ) 
v l : = ~  \ax2 --ul 

in B. (4.9) 

1 ( av3 ) 
- -  U 2 V 2 := -~ aX 1 

Because of the compatibility condition (3.3) we can choose a function g ~ C I'~(S) such that 

ag _ (n,u) - Re onS, (4.10) 
at 

and this function is uniquely determined up to an additive constant. Hence, we can uniquely 
determine g by the additional condition 

f sgds  = (4.11) 1. 

Then the boundary condition (4.8) can be rewritten into the form 

v3 =g onS. (4.12) 

Firstly, we consider the case where the homogeneous Dirichlet problem 

~+R2a=0 inB, (4.13) 

a = 0 on S, (4.14) 

has only the trivial solution. Then the boundary value problem (4.7) and (4.8) is solvable and 
the solution can be made unique by prescribing 

f svads  = (4.15) 1. 
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Since we have 

av3 
X(t,v) = - ( t ,u)  - an 

the solution of the system (4.5) and (4.6) is given by 

77 =g,  6 = -~ ( t ,u)  + -~n " (4.16) 

Again, this solution can be made unique by the additional condition 

f s  ~ds = 1. (4.17) 

Therefore, given r/ = g explicitly by (4.10) to solve the boundary value problem we have to 
solve only one integral equation (4.6) for the unknown 6. 

In the case where the homogeneous problem (4.13) and (4.14) possesses nontrivial solutions 
the inhomogeneous problem is solvable if and only if the additional condition 

aa f. g ~ ds - (e3 ,rot u + Xu)adx = 0 (4.18) 

is satisfied for all solutions a of (4.13) and (4.14). 
Suppose the homogeneous problem (4.13) and (4.14) has exactly one linearly independent 

solution a and this solution satisfies 

x = 0. (4.19) 

This, for instance, is true for B a rectangle. Then the problem 

r o t v - X v = g r a d a  inB, 

(n,v) = 0 o n  S ,  

has a nontrivial solution v since (4.19) ensures that (3.3) is satisfied and (4.18) holds because 
from (4.10) we observe 

ag aa 
- onS 

at an 

in this case, whence 
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~a ds = ½ fs  ~ g2 ds = O  'rn 
follows. Therefore, in this particular case ~. is not regular with respect to K(B). 

We emphasize at this point that for all X the homogeneous problem K(B) has a nontrivial so- 

lution. For those X for which the homogeneous Dirichlet problem has only the trivial solution, 

there exists exactly one linearly independent solution of the homogeneous problem K(B) and 

this solution is characterized by the property v3 = const on S. 

If the homogeneous Dirichlet problem (4.13) and (4.14) has m linearly independent solu- 

tions then obviously the homogeneous problem K(B) has m linearly independent solutions with 

the property va = 0 on S. In addition, there exists a further nontrivial solution with va = const 

4:0 on S in the case where 

fB adx = 0 

for all solutions to the homogeneous Dirichlet problem. 

The infinite cylinder might be considered as the limiting case of a toms with cross section B. 

An extension of the results from the two-dimensional case to the case of a toms is in prepara- 

tion. 

In the case when B is the interior of the unit circle the solutions to the homogeneous prob- 

lem K(B) can be given explicitly ([4], p. 42, [13]) in polar cylinder coordinates (r,(~,z) by 

v r=O v~=cJ, CAr) Vz=CJo(~) (4.20) 

where c = const and Jo and J1 denote the Bessel functions of order zero and one. With the ex- 

ception of the zeros X of Jo we have v z = const 4 :0  on the boundary S. For the zeros X of Jo 

there holds f s  vzdx 4:0 and therefore no solution exists with v z = const 4:0 on S in these cases. 

Furthermore, for the zeros ~ of the Bessel function Jm of order m we have the additional solu- 

tions 
Jr. (~,) 

v r = m ~ (cl cos m¢ - c2 sin mq~), 

v,  = - Jm(~)  (cl sin mq~ + c2 cos m~b), (4.21) 

Vz = Jm CAr) (cl sin m~b + c2 cos m~b), 

with the property v z = 0 on the boundary S. Note that all the streamlines are spirals. 

5. Numerical solution of the integral equation in two dimensions 

In order to get numerical approximations to the nontrivial solution of the homogeneous prob- 

lem K(B) after setting 77 = 1 we have to numerically solve the integral equation 
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½~(x)- fs a~, 8(y)ds(y)  = - • f s  (n(x),n(y))~bds(y). (5.1) 

We assume the boundary S of  B to be analytic and choose a parametric representation of the 
form 

x(o) = (x , ((1),x=((1)), 0 < ( 1 < 2 . .  

Then, by straightforward calculations, we transform the integral equation (5.1) into the para- 
metric form 

1 fo=rr 1 ; o 2 "  ~((1)-  ~ K((1,r)~(r)dr = ~ L((1,r)dr 

where 

(5.2) 

• 2 1_ ~(o) := ([~,(o)P + [&((1)] ),8(x((1)), 

HI (~((1,r)) 
K(e,z) : = -  irrX{Yc:(o)[xl((1) - xl  (r)] -xl((1)[x:((1)-  x2(r)]} r((1,r) ' 

L((1,r) := - irrMk, ((1~1 (r) + ~:  ((1)k2 (r)}H~ (Xr((1,r)), 

r((1,r) := { [x ,  ((1) - x ,  (r) l  2 + [x = ((1) - x :  (r)]  = ft. 

Here HI (~) = - (d/d~)Hlo (~) denotes the Hankel function of  the first kind and of  order one. By 

decomposing 

Ho (~) = Jo (~) +/No (~) 

where Jo and No denote the Bessel and Neumann functions of order zero and taking into ac- 

count the expansions 

J o ( ~ ) =  ~: ( - 1 ) k ~  :k  
k=O (k!)222k ' 

No(G) = ~ g= 1 

with real coefficients ak and Euler's constant c = 0.57721 . . .  we observe that the integrands in 

(5.2) have logarithmic singularities. Therefore, we split 

K(o,r) = K1 (o,r)ln 4 sin 2 o - r T + K2 (o,r),  
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O - - T  
L(o,r) =L l (o , r ) ln  4 sin: - - ~  +L2(o,r), 

where 

K1 (o,r) := M22 (o)[x, (o) - x l (r)] - 21 (o)[x2 (o) - x2 (r)] 

K2 (a ,r ) :=  K(o , r )  - K1 ( o , r ) l n  4 sin 2 o - r 
2 ' 

L ,  (o,r):= X{2, (0)21 (r) + 22 (o)~ 2 (r)}Jo (Xr(o,r)), 

L :  (a,r) := L(o,r) - L 1 (o,r)ln 4 sin 2 o - r 
2 

J, (Xr(o,r)) 
r(o,r) 

45 

Then K1, K2, L~, L 2 are analytic for all 0 ~< a,r  ~< 2zr. In particular 

K2 (o',o) - 
22 (o):~, (o) - 2, (o)~2(o) 

[21 (o)] 2 + [22 (o)P 

L2(o,o) = M[2,  (o)12 + [22(0)] 2 } {2e + In ¼X z {[2, (o)12 + [22(o)] 2 } - hi}. 

For the numerical approximation we choose an equidistant set of knots 

7r 
O k : = ~ k  , k = 0  . . . . .  2 N - l ,  

and use the quadrature formulae 

1 r " - ~  1 2N-1 
Jo f(o)do.~ ~ ~-, f(ok), (5.3) 

k = 0  

1 (-~.,r a 2N-1 
2--~ 3o  f ( o ) l n 4  sin 2 5 d o ~  ~, Rkf(ak)  , (5.4) 

k = O  

where the weights R k are given by 

1 t (  1)g N- lcoS jOk  t 
Rk :- N - - ~  + ~" " k=O, , 2 N - 1  j=l ] . . . . .  

These quadrature rules are obtained by replacingfby its trigonometric interpolation polynomial 
and then integrating analytically. The quadrature rule (5.4) was previously used by Martensen 

[15] and Kussmaul [11] for the numerical solution of boundary integral equations with loga- 
rithmic singularities. Provided f is analytic, according to derivative-free error estimates in the 
spirit of  Davis' method [2] for the remainder term in trigonometric interpolation of  periodic 
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analytic functions [7], the error of  the quadrature rules (5.3) and (5.4) decreases at least expo- 

nentially when the number N of  knots is increased. 

In the well known fashion the integral equation (5.2) is now replaced by the approximate 

linear system 

¢'k - / = o  

= i=o t R j - k L l ( ° k ' ° i ) +  ~ L2(°k ' ° j )  ' k = 0  . . . . .  2 N -  1. 

The numerical example is carried out for an ellipse 

x l ( o ) = c o s o ,  x 2 ( o ) = b s i n o .  

From (4.20) we observe, that in the limiting case b = 1 of  the unit circle, the solution of  the in- 

tegral equation (5.1) is given by - ~ = J1 (~)/Jo (~). 

We conclude with a few numerical results on the values o f  - ~i on the boundary for b = 1, 

0.6, 0.4 a n d N =  16,8. 

h=0.1 N=16  

0 0.050062 
~/8 

3rr/8 
,r/2 

h=0.1 N = 8  

0.6 

0.044140 
0.044142 
0.044146 
0.044149 
0.044150 

0.4 

0.034489 
0.034490 
0.034493 
0.034495 
0.034497 

0 
~r/4 
~r/2 

0.050062 

0.6 

0.044149 
0.044144 
0.044146 

0.4 

0.034911 
0.034438 
0.034366 

h=0.5 N= 16 

0 
~r/8 
rr[4 

37r/8 
~r/2 

1 

0.258152 

0.6 0.4 

0.223502 0.173247 
0.223695 0.173390 
0.224143 0.173737 
0.224632 0.174087 
0.224827 0.174232 
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h=0.5 N= 8 

o ~ ~ 0  bl 1 0.6 0.4 

0.258152 0.223555 0.175428 
~I~ ] 0.224156 0.173449 

0.224807 0.173570 

h = l  N=16  

0 
7r/8 
7r/4 

37r/8 
~r/2 

0.575080 

0.6 

0.466078 
0.467751 
0.471823 
0.475938 
0.477655 

0.4 

0.351683 
0.352873 
0.355777 
0.358717 
0.359945 

~.=1 N = 8  

~ 1  1 0.6 0.4 

0.575081 0.466361 0.356544 
0.471676 0.355269 
0.477730 0.358643 

The numerical results indicate that the field lines which are spirals ([4],  p. 42)become steeper 

as the minor axis b gets smaller and that they are slightly steeper at the point o = 0 (major axis) 

than at the point e = ~r/2 (minor axis). 
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